

98,8% de clients satisfaits*

INGÉNIERIE DE PROJET ET DES SYSTÈMES COMPLEXES

CODE: 8602

CONCEPTION DES ARCHITECTURES LOGIQUE ET PHYSIQUE OPTIMISÉES DES SYSTÈMES COMPLEXES

COMPÉTENCE PRINCIPALE VISÉE

■ Améliorer et rationaliser les activités de conception des architectures de systèmes complexes

OBJECTIFS PÉDAGOGIQUES

- Concevoir l'architecture logique (fonctionnelle, dynamique et comportementale, temporelle) d'un système
- Concevoir des architectures physiques alternatives dotées de propriétés remarquables
- Choisir la solution architecturale optimisée
- Mettre en œuvre les techniques de modélisation adaptées

PUBLIC

- Ingénieurs ou techniciens supérieurs ayant une ou plusieurs expériences dans les systèmes pluridisciplinaires
- Maîtres d'ouvrage, Maîtres d'œuvre
- Réalisateurs de systèmes
- Acteurs désirant améliorer et rationaliser les activités de conception des architectures de systèmes complexes

PRÉREQUIS

- Maîtriser les fondamentaux de l'ingénierie de système et la terminologie associée (à acquérir par la formation 8600)
- Avoir quelques années d'expérience industrielle
- Maitriser les raisonnements mathématiques de type algèbre fondamentale et théorie des ensembles

CONTENU

CONTEXTE

Dans le développement des systèmes complexes, des erreurs récurrentes conduisent à des interfaces défectueuses et à des difficultés opérationnelles :

- passage direct des besoins et exigences de haut niveau à la réalisation de solutions technologiques
- focalisation exclusive sur la définition des exigences (étape préparatoire à la conception)
- architectures construites par juxtaposition de technologies (sans «approche système» globale et intégrée)
- absence de conception sur les niveaux de sous-systèmes intermédiaires (dédiés à des fonctions raffinées).

Cette formation présente les bases méthodologiques et les techniques de modélisation afférentes.

PARTIE 1 - ARCHITECTURES ET MODELISATIONS

Rappels d'ingénierie de système

■ Généralités relatives à la conception : architectures et arborescences, SBS versus PBS, définitions, écueils

SESSIONS

VILLEURBANNE: du 13/10/2025 au 14/10/2025 et du 04/11/2025 au 05/11/2025

Frais pédagogiques individuels : 3 200 € H.T.

* Repas inclus

L'ouverture de la session est conditionnée par un nombre minimum de participants.

DURÉE

4 jours (28 heures)

ÉQUIPE PÉDAGOGIQUE

Thérèse RENARD - Responsable des formations de MAP système - Membre de l'INCOSE et de l'AFIS & Dean-Luc WIPPLER - LUCA INGENIERIE

PARTENAIRES

RENSEIGNEMENTS ET INSCRIPTION

Tel: +33 (0)4 72 43 83 93 Fax: +33 (0)4 72 44 34 24 mail: formation@insavalor.fr

Préinscription sur formation.insavalor.fr

Accueil des personnes en situation de handicap nécessitant un besoin spécifique d'accompagnement : nous

contacter à l'inscription

 Techniques de modélisation et concepts afférents : sémantique, fonctionnel, dynamique et comportemental, temporel, physique, représentations SysML

PARTIE 2 - DEMARCHE SIMPLIFIEE D'ARCHITECTURE

- Passage des exigences à la conception d'architectures ; éléments d'ontologie pour la conception
- Déroulement simplifié des processus de conception logique et physique sur un exemple

PARTIE 3 - CONCEPTION D'ARCHITECTURES LOGIQUES

- Modèles: fonctionnel, dynamique et comportemental, temporel, intégration des modèles
- Présentation et compréhension de patterns de comportement (modèles conceptuels génériques)
- Description des activités du processus ; application sur l' étude de cas

PARTIE 4 - CONCEPTION D'ARCHITECTURES PHYSIQUES

- Propriétés architecturales remarquables ; focalisation sur les interfaces
- Principes de partitionnement et d'allocation des fonctions sur des constituants physiques
- Critères de composition des architectures candidates ; exemple : modularité
- Définition des besoins / exigences des sous-systèmes
- Description des activités du processus ; application sur l'étude de cas

PARTIE 5 - ÉVALUATION DES PROPRIÉTÉS DU SYSTÈMES (ANALYSES SYSTÈME)

- Description des activités du processus ; modèles décisionnels multicritères
- Analyses d'efficacité, de coûts, de risques techniques ; analyses comparatives (trade-offs)

PARTIE 6 - COMPLÉMENTS

- Grille d'analyse systémique ; réutilisation des constituants
- Ecueils, vérification et validation des architectures, documentation
- Projection de l'architecture système sur les technologies ou métiers, organisations afférentes

Le livre " SYSTEMS ARCHITECTURE AND DESIGN " - Alain FAISANDIER - ISBN 979-10-91699-03-7 sera remis à chacun des participants.

MOYENS ET MÉTHODE PÉDAGOGIQUE

Apports théoriques - Exercices d'illustration et d'application - Travaux dirigés en groupe - Mise en pratique sur étude de cas

Un support de cours sera remis à chacun des participants.

ÉVALUATION ET RÉSULTATS

Évaluation des acquis de la formation

Evaluation des acquis des apprenants réalisée en fin de formation par un questionnaire ouvert contextualisé.

Taux de réussite

93.4% des apprenants ont acquis la compétence principale visée Résultat obtenu pour 100 participants évalués ayant suivi une formation dans la thématique sur les 5 dernières années

Évaluation de la satisfaction

Evaluation du ressenti des participants en fin de formation (Niveau 1 KIRKPATRICK)

Résultats de l'évaluation

Le niveau de satisfaction globale est évalué à 4.4/5 par les participants. Evaluations réalisées auprès des 238 participants ayant suivi une formation dans la thématique sur les 5 dernières années

Actualisée le 16/10/2024