CODE: 6161

PHÉNOMÈNES VIBRATOIRES - ACOUSTIQUE - DYNAMIQUE

DYNAMIQUE DES ROTORS

COMPÉTENCE PRINCIPALE VISÉE

■ Disposer de critères pour la conception et l'amélioration des machines tournantes

OBJECTIFS PÉDAGOGIQUES

- Savoir utiliser les techniques d'analyse de la dynamique des rotors
- Comprendre et maîtriser le comportement dynamique des rotors en respectant les règles et les critères de conception
- Traiter des exemples caractéristiques

PUBLIC

■ Ingénieurs d'études ou d'essais chargés de la conception ou de la mise au point de machines tournantes

PRÉREQUIS

Connaissances de base en vibrations mécaniques

CONTENU

CONTEXTE

Le stage est axé sur la théorie et la pratique de la dynamique des rotors. Il s'agit d'analyser les phénomènes spécifiques aux rotors et de prévoir leur comportement. Deux maquettes de rotor et des études de cas permettent d'effectuer des mesures et des interprétations.

PRELEMINAIRE - RAPPEL DE VIBRATIONS MECANIQUE

PARTIE 1 - ROTORS EN FLEXION

PARTIE 1-1 - CARACTÉRISTIQUES DES ÉLÉMENTS DE ROTORS EN FLEXION

- Disques
- Arbre
- Balourd
- Palier lisse et à roulement

PARTIE 1-2 - MODÈLES SIMPLES - PHÉNOMÈNES DE BASE

- Monorotor, cas symétrique et dissymétrique :
 - fréquences et modes
 - diagramme de Campbell
 - réponse au balourd et à une force asynchrone
 - instabilité
 - amortissement

PARTIE 1-3 - MODÉLISATION - ÉLÉMENTS FINIS

■ Éléments finis: monorotors

SESSIONS

VILLEURBANNE: du 06/10/2025 à 14h00 au 10/10/2025 à 12h00

Frais pédagogiques individuels : 2 860 € H.T.

L'ouverture de la session est conditionnée par un nombre minimum de participants.

DURÉE

4 jours (28 heures)

ÉQUIPE PÉDAGOGIQUE

Enseignants-chercheurs du Laboratoire de Mécanique des Contacts et des Structures de l'INSA de Lyon, UMR CNRS 5259. Société Technivib.

RENSEIGNEMENTS ET INSCRIPTION

Tel: +33 (0)4 72 43 83 93 Fax: +33 (0)4 72 44 34 24 mail: formation@insavalor.fr

Préinscription sur formation.insavalor.fr

Accueil des personnes en situation de handicap nécessitant un besoin spécifique d'accompagnement : nous contacter à l'inscription

- Solutions des équations, méthode pseudo-modale
- Méthode d'équilibrage

PARTIE 1-4 - APPLICATIONS

- Influence de la modélisation, maillages avec EF 1D et EF volumique
- Transmissibilité, isolation vibratoire
- Normes API
- Compresseurs, turbines...

PARTIE 2 - ROTORS EN TORSION

PARTIE 2-1 - MODÉLISATION, SYSTÈMES BRANCHÉS

- Fréquences et modes, diagramme de Campbell
- Réponse transitoire

PARTIE 2-2 - APPLICATION

■ Ensemble moteur électrique / compresseur

PARTIE 3 - MESURE ET ANALYSE DES PHÉNOMÈNES DE BASE

PARTIE 4 - DEUX MAQUETTES DE ROTORS ET ÉTUDES DE CAS

MOYENS ET MÉTHODE PÉDAGOGIQUE

Exposés, démonstrations, utilisation du logiciel ROTORINSA®, pour modéliser des machines tournantes et étude de cas.

Ainsi que le livre : "Rotordynamics Prediction in Engineering, M. Lalanne, G. Ferraris, 2nd Ed., John Wiley, 1998". A cela se rajoute la version .pdf du livre : Mechanical Vibrations for Engineers, M.Lalanne, P. Berthier and J. Der Hagopian, Ed. J. Wiley, 1983

Un support de cours sera remis à chacun des participants.

ÉVALUATION ET RÉSULTATS

Évaluation des acquis de la formation

Evaluation des acquis des apprenants réalisée en fin de formation, par un questionnaire ouvert contextualisé.

Taux de réussite

85.8% des apprenants ont acquis la compétence principale visée Résultat obtenu pour 435 participants évalués ayant suivi une formation dans la thématique sur les 5 dernières années

Évaluation de la satisfaction

Evaluation du ressenti des participants en fin de formation (Niveau 1 KIRKPATRICK)

Résultats de l'évaluation

Le niveau de satisfaction globale est évalué à 4.5/5 par les participants.

Evaluations réalisées auprès des 649 participants ayant suivi une formation dans la thématique sur les 5 dernières années

Actualisée le 15/10/2024