

MATÉRIAUX ET MÉTALLURGIE / POLYMÈRES - PLASTIQUES - COMPOSITES

NOUVEAU POSSIBLE EN INTRA

RECYCLAGE DES MATIÈRES PLASTIQUES

Le recyclage des plastiques s'impose comme un levier clé de l'économie circulaire. Cette formation explore les technologies disponibles, leurs impacts sur procédés et produits, et prépare à intégrer efficacement les matières recyclées en fabrication.

4 JOURS (32 H.)

COMPÉTENCE PRINCIPALE VISÉE

Comprendre les technologies de recyclage des plastiques et leurs impacts pour les intégrer efficacement en production.

Visite du laboratoire Ingénierie des Matériaux Polymères - IMP - de l'INSA LYON pour une immersion concrète, Echanges avec des experts du secteur et réalisation d'études de cas pratiques favorisant l'application directe des connaissances.

- Techniciens ou ingénieur d'études, de développement, dans le domaine des polymères et matériaux composites, revêtements et adhésifs
- Responsable, chargé d'affaires RSE et performance environnementale

• Bases de chimie et physico-chimie des polymères

OBJECTIFS PÉDAGOGIQUES

- Analyser les enjeux techniques, réglementaires et environnementaux liés au recyclage des plastiques
- Articuler les technologies de recyclage au sein d'une approche systémique de l'économie circulaire
- Mettre en œuvre l'Analyse de Cycle de Vie afin d'évaluer les impacts environnementaux des procédés de recyclage des plastiques.

CONTENU

PARTIE 1 - INTRODUCTION AU RECYGLAGE

- Place du recyclage dans stratégies 3R/5R Économie circulaire des matières
- Recyclage des plastiques État des lieux chiffré :
 - Production plastiques
 - o nature des plastiques et secteurs applicatifs
 - o fin de vie / part recyclage
- Le recyclage des plastiques : une approche systémique
- Différentes voies de recyclage Introduction

PARTIE 2 - RECYCLAGE MÉCANIQUE DES POLYMÈRES

- Principes et phénomènes associés suivant la nature des polymères et les formulations
 - o dégradation, formation néo-formés, etc.
 - o Exemple: PET vs. Polyoléfines, ...
- Recyclage mécanique et compatibilisation (mélanges de matières)
- Applications et limitations associées
 - o Polythylène Téréphtalate (PET)
 - o Polyoléfines
 - Mélanges complexes : PE/PP, PA/PP, etc.
 - NIAS (Non-intentionally Added Substances)
- Développements industriels

PARTIE 3 - RECYCLAGE CHIMIQUE DES POLYMÈRES

- Principes, chimies et procédés suivant la nature des polymères
 - o thermoplastiques PET et polyesters, polyuréthanes, polyamides, etc.
 - o thermodurcissables époxy, UP, silicones et caoutchoucs, etc.
- Recyclage chimique et comptabilisation (mélanges de matières)
- Développements industriels

PARTIE 4 - RECYCLAGE ENZYMATIQUE DES POLYMÈRES

- Principes et phénomènes associés au recyclage enzymatique Intérêts, potentialités et limites
- Développements industriels dans les domaines de l'emballage et du textile

PARTIE 5 - AUTRES VOIES DE RECYCLAGE DES POLYMÈRES

- Séparation des composants pour entrée dans l'étape de recyclage matière
 - o Dissolution sélective : Principe, applications (emballages multicouches, PVC, textiles, etc)
 - o Procédés faisant appel à des fluides supercritiques (CO2)
- Décontamination des déchets plastiques
 - NIAS Non-Intentionaly Added Substances formées dans les procédés dont ceux de recyclage
 - o Procédés d'extraction : solvants, fluides supercritiques
 - o Outils et méthodologie d'analyse des polluants et néo-formés

PARTIE 6 - CHAÎNE DE VALEUR DU RECYCLAGE DES POLYMÈRES ET DE LEUR RÉINTÉGRATION

- Etapes de la chaîne de valeur du recyclage : de la collecte à la réutilisation des matières plastiques (collecte, gisements, procédés, etc..
- Exemples de chaînes de valeur :

* enquête réalisée aupr de nos clients en septembre 2024

- o recyclage des emballages,
- o recyclage des DEEE (déchets de l'électronique),
- o recyclage des pneumatiques

PARTIE 7 - RECYCLAGE & RÉGLEMENTATION

- Place de la réglementation Illustration dans différentes filières
- Principales réglementations en cours ayant trait au recyclage des plastiques (REP, etc)
- La question de la 'mass balance' et ses conséquences

PARTIE 8 - RECYCLAGE & ANALYSE DU CYCLE DE VIE

- Principes de l'Analyse de Cycle de Vie (ACV)
- Déroulement d'une ACV : unité fonctionnelle, indicateurs, etc
- Exemples d'analyses de cycle vie éclairant le recyclage des plastiques dans différents domaines :
 - o emballages
 - o automobile
 - o plastiques biosourcés et biodégradables
 - o matériaux composites à matrice polymère thermodurcissable

ÉQUIPE PÉDAGOGIQUE

Enseignants-chercheurs du laboratoire Ingénierie des Matériaux Polymères de l'INSA de Lyon (UMR CNRS n°5223)

MOYENS ET MÉTHODES PÉDAGOGIQUES

Exposés, illustrations, études de cas, visite de laboratoires et échanges avec des experts du domaine Un support de cours sera remis à chacun des participants.

PROCHAINE SESSION

VILLEURBANNE: DU 16/03/2026 AU 20/03/2026 À 12H30

Frais pédagogiques individuels : 2 835 € H.T. (* Repas inclus)

L'ouverture de la session est conditionnée par un nombre minimum de participants. Nous consulter pour d'autres dates.

ÉVALUATION ET RÉSULTATS

Évaluation des acquis de la formation

Evaluation des acquis des apprenants par auto-examen. 90.6% des apprenants ont acquis la compétence principale visée. (sur 435 apprenants évalués sur cette thématique depuis 2020)

Évaluation de la satisfaction des participants en fin de formation (Niveau 1 KIRKPATRICK)

4.4 par les participants. (sur 1045 participants ayant suivi une formation dans la thématique depuis 2020)

RENSEIGNEMENTS ET INSCRIPTION

Tel: +33 (0)4 72 43 83 93 Fax: +33 (0)4 72 44 34 24 mail: formation@insavalor.fr

Préinscription sur formation.insavalor.fr

Accueil des personnes en situation de handicap nécessitant un besoin spécifique d'accompagnement : nous contacter à l'inscription.

Actualisée le 07/10/2025