

ÉLECTRONIQUE - RADIOFRÉQUENCES - MATÉRIAUX INTELLIGENTS / TECHNIQUES DE RADIOFRÉQUENCES - ANTENNES

NOUVEAU POSSIBLE EN INTRA

PLANIFICATION SYSTÈMES RADIO - COUVERTURE CELLULAIRE

Avec l'explosion des objets connectés et le déploiement des réseaux sans fil (5G, WiFi 6/7, IoT), cette formation permet de comprendre la propagation, l'environnement radio et l'usage optimal des antennes pour concevoir et déployer des systèmes performants.

COMPÉTENCE PRINCIPALE VISÉE Réaliser des mesures et caractérisations RF à l'aide d'un analyseur de réseaux vectoriel (ARV) en lien avec la planification et l'analyse de systèmes radio.

50 % de la formation se déroule sur plateforme technologique ou en salle de simulations numériques : Travaux sur antennes, propagation, LTE, IoT/LoRaWAN et analyseurs, avec simulations et manipulations.

• Ingénieurs, techniciens de bureaux d'études, de déploiement ou de maintenance devant intervenir dans le domaine des télécommunications et/ou des réseaux

• Disposer de bonnes notions en mathématiques, notamment en ce qui concerne les nombres complexes.

OBJECTIFS PÉDAGOGIQUES

- Maîtriser la propagation des ondes et le dimensionnement des systèmes radio.
- Concevoir et simuler des réseaux sans fil et cellulaires, incluant LTE et IoT/LoRaWAN.
- Utiliser les outils pratiques (antennes, analyseurs, plateformes de simulation) pour optimiser couverture et performance.

PARTIE 1 - PROPAGATION DES ONDES ET PRINCIPALES FONCTIONNALITÉS

- Les grands principes qui régissent la propagation des ondes radio
- Fonctionnement d'une antenne
- Différents modèles de propagation
- Exemples de couverture radio

TRAVAUX PRATIQUES: Propagation

- Mesures sur analyseur de spectre.
- Propagation en fonction de la distance,
- Caractérisation d'une antenne

PARTIE 2 - DE LA THEORIE A LA RATIQUE DES SYSTEMES DE COMMUNICATION RADIO

- Description générique des systèmes de communication
- Représentation spectrale des signaux radio,
- Modulation, codage, capacité
- Systèmes radio : chaîne, allant de la modulation aux codages,
- Panorama des techniques existantes (BLE, LORA, 2G/3G/4G/5G, WiFi) et spécificités

TRAVAUX PRATIQUES: Simulations

- Simulations dans GNU Radio,
- Visualisation de quelques modulations

PARTIE 3 - RESEAU SANS-FILS MULTI-UTILISATEURS

- Gestion du spectre,
- Normalisation des réseaux d'accès radio
- 5G/6G, MIMO, NOMA, Massive MIMO

TRAVAUX PRATIQUES: Exploration du spectre électromagnétique

• Visite du spectre électromagnétique environnant

PARTIE 4 - MESURES ET UTILISATION DE L'ANALYSEUR DE RÉSEAU VECTORIEL (travaux pratiques)

- Planification des réseaux,
- Couches protocolaires.
- Modèle cellulaire,
- Pavage

TRAVAUX PRATIQUES : Analyse et décodage d'un signal LTE

• Etude d'un signal LTE sous VSA (Vector Signal Analyzer)

PARTIE 5 - LES RESEAUX IoT

- Introduction aux réseaux IoT,
- Définition de leurs couches physiques (CSS, UNB, RPMA),
- Définition de leur couche MAC

* enquête réalisée auprès de nos clients en septembre 2024

TRAVAUX PRATIQUES: LoRa

- Prise en main du MKR 1310.
- Paramètres de la couche physique (SF, BW, CR),
- Formatage du payload

PARTIE 6 - LoRaWAN

- Présentation
 - o de l'architecture,
 - o du protocole,
 - o de la sécurité,
 - o de l'intégration des données,
- Exemples d'applications et de retours d'expérience

TRAVAUX PRATIQUES: LoRaWAN

- Identifiants et clés : DevEUI, AppEUI, AppKey et sécurité LoRaWAN
- Enregistrement sur The Things Network (TTN): Création du compte, ajout du dispositif et paramétrage
- Sécurité OTAA (Over-the-Air Activation) : Activation sécurisée et génération dynamique des clés
- Intégration des données via MQTT/MQTTs: Connexion TTN -> MQTT, récupération et visualisation des données

ÉQUIPE PÉDAGOGIQUE

Enseignants-chercheurs au laboratoire CITI (CENTRE OF INNOVATION IN TELECOMMUNICATIONS) et au département Télécommunications, Services et Usages de l'INSA Lyon.

MOYENS ET MÉTHODES PÉDAGOGIQUES

Alternance d'apport théoriques, de travaux pratiques et simulations pour illustrer les notions dans le domaine de la planification de systèmes radio Un support de cours sera remis à chacun des participants.

PROCHAINE SESSION

VILLEURBANNE : DU 02/06/2026 AU 04/06/2026

Frais pédagogiques individuels : 2 310 € H.T. (* Repas inclus)

L'ouverture de la session est conditionnée par un nombre minimum de participants. Nous consulter pour d'autres dates.

ÉVALUATION ET RÉSULTATS

Évaluation des acquis de la formation

Evaluation des acquis des apprenants par auto-examen. 87.6% des apprenants ont acquis la compétence principale visée. (sur 233 apprenants évalués sur cette thématique depuis 2020)

Évaluation de la satisfaction des participants en fin de formation (Niveau 1 KIRKPATRICK)

4.3 par les participants. (sur 437 participants ayant suivi une formation dans la thématique depuis 2020)

RENSEIGNEMENTS ET INSCRIPTION

Tel: +33 (0)4 72 43 83 93 Fax: +33 (0)4 72 44 34 24 mail: formation@insavalor.fr

Préinscription sur formation.insavalor.fr

Accueil des personnes en situation de handicap nécessitant un besoin spécifique d'accompagnement : nous contacter à l'inscription.

Actualisée le 09/10/2025